MATEMÁTICA SISTEMAS LINEARES
Introdução aos sistemas lineares
Esta página trata sobre equações lineares e inicia mostrando uma aplicação de matrizes e sistemas lineares. As equações lineares assim como os sistemas de equações são muito utilizados no cotidiano das pessoas.
Exemplo: Uma companhia de navegação tem três tipos de recipientes A, B e C, que carrega cargas em containers de três tipos I, II e III. As capacidades dos recipientes são dadas pela matriz:
Tipo do Recipiente | I | II | III |
---|---|---|---|
A | 4 | 3 | 2 |
B | 5 | 2 | 3 |
C | 2 | 2 | 3 |
Quais são os números de recipientes x1, x2 e x3 de cada categoria A, B e C, se a companhia deve transportar 42 containers do tipo I, 27 do tipo II e 33 do tipo III?
Montagem do sistema linear
4 x1 + 5 x2 + 2 x3 = 42
3 x1 + 3 x2 + 2 x3 = 27
2 x1 + 2 x2 + 2 x3 = 33
Arthur Cayley (1821-1895): Matemático inglês nascido em Richmond, diplomou-se no Trinity College de Cambridge. Na sua vida, Cayley encontrou rivais em Euler e Cauchy sendo eles os três maiores produtores de materiais no campo da Matemática. Em 1858, Cayley apresentou representações por matrizes. Segundo ele, as matrizes são desenvolvidas a partir da noção de determinante, isto é, a partir do exame de sistemas de equações, que ele denominou: o sistema. Cayley desenvolveu uma Álgebra das matrizes quadradas em termos de transformações lineares homogêneas.
Equação linear
É uma equação da forma
a11 x1 + a12 x2 + a13 x3 + ... + a1n xn = b1
onde
-
x1, x2, ..., xn são as incógnitas;
-
a11, a12, ...,a1n são os coeficientes (reais ou complexos);
-
b1 é o termo independente (número real ou complexo).
Exemplos de equações lineares
-
4 x + 3 y - 2 z = 0
-
2 x - 3 y + 0 z - w = -3
-
x1 - 2 x2 + 5 x3 = 1
-
4i x + 3 y - 2 z = 2-5i
Notação: Usamos R[x] para a raiz quadrada de x>0.
Exemplos de equações não-lineares
-
3 x + 3y R[x] = -4
-
x2 + y2 = 9
-
x + 2 y - 3 z w = 0
-
x2 + y2 = -9
Solução de uma equação linear
Uma sequência de números reais (r1,r2,r3,r4) é solução da equação linear
a11 x1 + a12 x2 + a13 x3 + a14 x4 = b1
se trocarmos cada xi por ri na equação e este fato implicar que o membro da esquerda é identicamente igual ao membro da direita, isto é:
a11 r1 + a12 r2 + a13 r3 + a14 r4 = b1
Exemplo: A sequência (5,6,7) é uma solução da equação 2x+3y-2z=14 pois, tomando x=5, y=6 e z=7 na equação dada, teremos:
2×5 + 3×6 - 2×7 = 14
Sistemas de equações lineares
Um sistema de equações lineares ou sistema linear é um conjunto formado por duas ou mais equações lineares. Um sistema linear pode ser representado na forma:
a11 x1 + a12 x2 +...+ a1n xn = b1
a21 x1 + a22 x2 +...+ a2n xn = b2
... ... ... ...
am1 x1 + am2 x2 +...+ amn xn = bn
onde
-
x1, x2, ..., xn são as incógnitas;
-
a11, a12, ..., amn são os coeficientes;
-
b1, b2, ..., bm são os termos independentes.
Solução de um sistema de equações lineares
Uma sequência de números (r1,r2,...,rn) é solução do sistema linear:
a11 x1 + a12 x2 +...+ a1n xn = b1
a21 x1 + a22 x2 +...+ a2n xn = b2
... ... ... ...
am1 x1 + am2 x2 +...+ amn xn = bn
se satisfaz identicamente a todas as equações desse sistema linear.
Exemplo: O par ordenado (2,0) é uma solução do sistema linear:
2x + y = 4
x + 3y = 2
x + 5y = 2
pois satisfaz identicamente a todas as equações do mesmo, isto é, se substituirmos x=2 e y=0, os dois membros de cada igualdade serão iguais em todas as equações.
Consistência de Sistemas Lineares
O número de soluções de um sistema linear determina a sua classificação de duas maneiras com relação à sua consistência:
Sistema possível ou consistente: Quando tem pelo menos uma solução.
-
Se tem uma única solução, o sistema é determinado.
-
Se tem mais que uma solução, o sistema é indeterminado.
Sistema impossível ou inconsistente: Se não admite qualquer solução.
Exemplos de sistemas com respeito às suas soluções
Sistema com uma única solução: As equações lineares abaixo representam duas retas no plano cartesiano que têm o ponto (3,-2) como interseção.
x + 2y = -1
2x - y = 8
Sistema com infinitas soluções: As equações lineares representam retas paralelas sobrepostas no plano cartesiano, logo existem infinitos pontos que satisfazem a ambas as equações (pertencem a ambas as retas).
4x + 2y = 100
8x + 4y = 200
Sistema que não tem solução: As equações lineares representam retas paralelas no plano cartesiano, logo, não existem pontos que pertençam às duas retas.
x + 3y = 4
x + 3y = 5
Sistemas equivalentes
Dois sistemas são equivalentes se admitem a mesma solução.
Exemplo: São equivalentes os sistemas S1 e S2 indicados abaixo:
|
|
---|
pois eles admitem a mesma solução x=10 e y=2.
Notação: Quando dois sistemas S1 e S2 são equivalentes, usamos a notação S1~S2.
Operações elementares sobre sistemas lineares
Existem três tipos de operações elementares que podem ser realizadas sobre um sistema linear de equações de forma a transformá-lo em um outro sistema equivalente mais simples que o anterior. Na sequência trabalharemos com um exemplo para mostrar como funcionam essas operações elementares sobre linhas. O segundo sistema (o que aparece à direita) já mostra o resultado da ação da operação elementar. Nas linhas iniciais de cada tabela, você encontra a operação que foi realizada.
-
Troca de posição de duas equações do sistema
Troca a Linha 1 com a Linha 3 x + 2y - z = 2
2x-3y+2z=0
4x + y - 5z = 9~ 4x + y - 5z = 9
2x-3y+2z=0
x + 2y - z = 2 -
Multiplicação de uma equação por um número não nulo
Multiplica a Linha 1 pelo número 3 x + 2y - z = 2
2x-3y+2z=0
4x+y-5z=9~ 3x + 6y - 3z = 6
2x-3y+2z=0
4x+y-5z=9A equação resultante fica na linha 1 -
Adição de duas equações do sistema
Adição da Linha 2 com a Linha 3 x+2y-z=2
2x -3y + 2z = 0
4x + y - 5z = 9~ 3x+6y-3z=6
2x-3y+2z=0
6x - 2y - 3z = 9A equação resultante fica na linha 3
Resolução de sistemas lineares por escalonamento
Com o auxílio das três Operações Elementares sobre linhas, podemos resolver sistemas lineares. Vamos mostrar como funciona este processo através de um exemplo.
Exemplo: Consideremos o sistema com 3 equações e 3 incógnitas.
3x + y + z = 20
2x - y - z = -15
-4x + y -5z = -41
Observação: Usamos Li+Lj->Lj para indicar a soma da linha i com a linha j com o resultado na linha j. Usamos k Li->Li, para indicar que multiplicamos a linha i pela constante k e o resultado ficou na linha i.
Passo 1: L1-L2->L1 | ||
---|---|---|
3x + 1y + 1z = 20 2x - 1y - 1z = -15 -4x+1y-5z=-41 |
~ | 1x + 2y + 2z = 35 2x-1y-1z=-15 -4x+1y-5z=-41 |
Passo 2: L2-2.L1->L2 | ||
---|---|---|
1x + 2y + 2z = 35 2x - 1y - 1z = -15 -4x+1y-5z=-41 |
~ | 1x+2y+2z=35 0x - 5y - 5z = -85 -4x+1y-5z=-41 |
Passo 3: L3+4.L1->L3 | ||
---|---|---|
1x + 2y + 2z = 35 0x-5y-5z=-85 -4x + 1y - 5z = -41 |
~ | 1x+2y+2z=35 0x-5y-5z=-85 0x + 9y + 3z = 99 |
Passo 4:(-1/5)L2->L2,(1/3)L3->L3 | ||
---|---|---|
1x+2y+2z=35 0x - 5y - 5z = -85 0x + 9y + 3z = 99 |
~ | 1x+2y+2z=35 0x + 1y + 1z = 17 0x + 3y + 1z = 33 |
Passo 5: L3-3.L2->L3 | ||
---|---|---|
1x+2y+2z=35 0x + 1y + 1z = 17 0x + 3y + 1z = 33 |
~ | 1x+2y+2z=35 0x+1y+1z=17 0x + 0y - 2z = -18 |
Passo 6: (-1/2)L3->L3 | ||
---|---|---|
1x+2y+2z=35 0x+1y+1z=17 0x + 0y - 2z = -18 |
~ | 1x+2y+2z=35 0x+1y+1z=17 0x + 0y + 1z = 9 |
Passo 7: L2-L3->L2 | ||
---|---|---|
1x+2y+2z=35 0x + 1y + 1z = 17 0x + 0y + 1z = 9 |
~ | 1x+2y+2z=35 0x + 1y + 0z = 8 0x+0y+1z=9 |
Passo 8: L1-2.L2-2.L3->L1 | ||
---|---|---|
1x + 2y + 2z = 35 0x + 1y + 0z = 8 0x + 0y + 1z = 9 |
~ | 1x + 0y + 0z = 1 0x+1y+0z=8 0x+0y+1z=9 |
Passo 9: Simplificar coeficientes | ||
---|---|---|
1x + 0y + 0z = 1 0x + 1y + 0z = 8 0x + 0y + 1z = 9 |
~ | x = 1 y = 8 z = 9 |
Após o escalonamento, observamos que a solução obtida é exatamente fornecida pelo último sistema.
Sistemas lineares homogêneos
Um sistema linear é homogêneo quando os termos independentes de todas as equações são nulos. Todo sistema linear homogêneo admite pelo menos a solução trivial, que é a solução identicamente nula. Assim, todo sistema linear homogêneo é possível. Este tipo de sistema poderá ser determinado se admitir somente a solução trivial ou indeterminado se admitir outras soluções além da trivial.
Exemplo: O sistema
2x - y + 3z = 0
4x + 2y - z = 0
x - y + 2z = 0
é determinado, pois possui a solução x=0, y=0 e z=0.
Regra de Cramer
Esta regra depende basicamente sobre o uso de determinantes. Para indicar o determinante de uma matriz X, escreveremos det(X).
Seja um sistema linear com n equações e n incógnitas:
a11 x1 + a12 x2 +...+ a1j xj +...+ a1n xn = b1
a21 x1 + a22 x2 +...+ a2j xj +...+ a2n xn = b2
... ... ... ...
an1 xn + an2 xn +...+ anj xj +...+ ann xn = bn